
AURORA’S PG COLLEGE

MOOSARAMBAGH

MCA DEPARTMENT

MCA IIND YR I SEM

OPERATING SYSTEMS

LAB MANUAL

OPERATING SYSTEMS LAB SYLLABUS

Implement the following programs on Linux platform using C language.

Exp.
No.

Division of
Experiments

List of Experiments
Page
No.

1

CPU
Scheduling
Algorithms

Write a C program to simulate the following non-preemptive CPU
scheduling algorithms to find turnaround time and waiting time.
a) FCFS b) SJF c) Round Robin (pre-emptive) d) Priority

2

2

*Write a C program to simulate multi-level queue scheduling algorithm
considering the following scenario. All the processes in the system are
divided into two categories – system processes and user processes.
System processes are to be given higher priority than user processes. Use
FCFS scheduling for the processes in each queue.

7

3
File

Allocation
Strategies

Write a C program to simulate the following file allocation strategies.
a) Sequential b) Indexed c) Linked

9

4

Memory

Management
Techniques

Write a C program to simulate the MVT and MFT memory management
techniques.

13

5
*Write a C program to simulate the following contiguous memory
allocation techniques
a) Worst-fit b) Best-fit c) First-fit

16

6 Write a C program to simulate paging technique of memory management. 20

7
File

Organization
Techniques

Write a C program to simulate the following file organization techniques
a) Single level directory b) Two level directory c) Hierarchical

22

8

Deadlock
Management
Techniques

Write a C program to simulate Bankers algorithm for the purpose of
deadlock avoidance.

29

9
*Write a C program to simulate disk scheduling algorithms
a) FCFS b) SCAN c) C-SCAN

32

10

Page
Replacement
Algorithms

Write a C program to simulate page replacement algorithms
a) FIFO b) LRU c) LFU

36

11
*Write a C program to simulate page replacement algorithms
a) Optimal

41

12

Process
Synchroniza-

tion

*Write a C program to simulate producer-consumer problem using
semaphores.

44

13
*Write a C program to simulate the concept of Dining-Philosophers
problem.

45

14 Lab Questions & Assignments 47

*Content beyond the university prescribed syllabi

OBJECTIVE:

This lab complements the operating systems course. Students will gain practical experience with designing and
implementing concepts of operating systems such as system calls, CPU scheduling, process management,
memory management, file systems and deadlock handling using C language in Linux environment.

OUTCOMES:
Upon the completion of Operating Systems practical course, the student will be able to:

1. Understand and implement basic services and functionalities of the operating system using system
calls.

2. Use modern operating system calls and synchronization libraries in software/ hardware interfaces.

3. Understand the benefits of thread over process and implement synchronized programs using
multithreading concepts.

4. Analyze and simulate CPU Scheduling Algorithms like FCFS, Round Robin, SJF, and Priority.

5. Implement memory management schemes and page replacement schemes.

6. Simulate file allocation and organization techniques.

7. Understand the concepts of deadlock in operating systems and implement them in multiprogramming
system.

2

EXPERIMENT 1

1.1 OBJECTIVE
Write a C program to simulate the following non-preemptive CPU scheduling algorithms to find turnaround time
and waiting time for the above problem.
a) FCFS b) SJF c) Round Robin d) Priority

1.2 DESCRIPTION
Assume all the processes arrive at the same time.

1.2.1 FCFS CPU SCHEDULING ALGORITHM
For FCFS scheduling algorithm, read the number of processes/jobs in the system, their CPU burst times. The
scheduling is performed on the basis of arrival time of the processes irrespective of their other parameters. Each
process will be executed according to its arrival time. Calculate the waiting time and turnaround time of each of
the processes accordingly.

1.2.2 SJF CPU SCHEDULING ALGORITHM
For SJF scheduling algorithm, read the number of processes/jobs in the system, their CPU burst times. Arrange
all the jobs in order with respect to their burst times. There may be two jobs in queue with the same execution
time, and then FCFS approach is to be performed. Each process will be executed according to the length of its
burst time. Then calculate the waiting time and turnaround time of each of the processes accordingly.

1.2.3 ROUND ROBIN CPU SCHEDULING ALGORITHM

For round robin scheduling algorithm, read the number of processes/jobs in the system, their CPU burst times,
and the size of the time slice. Time slices are assigned to each process in equal portions and in circular order,
handling all processes execution. This allows every process to get an equal chance. Calculate the waiting time
and turnaround time of each of the processes accordingly.

1.2.4 PRIORITY CPU SCHEDULING ALGORITHM
For priority scheduling algorithm, read the number of processes/jobs in the system, their CPU burst times, and
the priorities. Arrange all the jobs in order with respect to their priorities. There may be two jobs in queue with
the same priority, and then FCFS approach is to be performed. Each process will be executed according to its
priority. Calculate the waiting time and turnaround time of each of the processes accordingly.

1.3 PROGRAM

1.3.1 FCFS CPU SCHEDULING ALGORITHM
#include<stdio.h>
#include<conio.h>
main()
{

int bt[20], wt[20], tat[20], i, n;
float wtavg, tatavg;
clrscr();
printf("\nEnter the number of processes -- ");

scanf("%d", &n);
for(i=0;i<n;i++)
{

printf("\nEnter Burst Time for Process %d -- ", i);
scanf("%d", &bt[i]);

}
wt[0] = wtavg = 0;
tat[0] = tatavg = bt[0];
for(i=1;i<n;i++)
{

wt[i] = wt[i-1] +bt[i-1];
tat[i] = tat[i-1] +bt[i];
wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];

}
printf("\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");

3

for(i=0;i<n;i++)
printf("\n\t P%d \t\t %d \t\t %d \t\t %d", i, bt[i], wt[i], tat[i]);

printf("\nAverage Waiting Time -- %f", wtavg/n);
printf("\nAverage Turnaround Time -- %f", tatavg/n);
getch();

}

INPUT

Enter the number of processes -- 3
Enter Burst Time for Process 0 -- 24
Enter Burst Time for Process 1 -- 3
Enter Burst Time for Process 2 -- 3

OUTPUT

PROCESS BURST TIME WAITING TIME TURNAROUND TIME
P0 24 0 24
P1 3 24 27
P2 3 27 30

Average Waiting Time-- 17.000000
Average Turnaround Time -- 27.000000

1.3.2 SJF CPU SCHEDULING ALGORITHM
#include<stdio.h>
#include<conio.h>
main()
{

int p[20], bt[20], wt[20], tat[20], i, k, n, temp;
float wtavg, tatavg;
clrscr();
printf("\nEnter the number of processes -- ");
scanf("%d", &n);
for(i=0;i<n;i++)
{

p[i]=i;
printf("Enter Burst Time for Process %d -- ", i);
scanf("%d", &bt[i]);

}
for(i=0;i<n;i++)

for(k=i+1;k<n;k++)
if(bt[i]>bt[k])
{

temp=bt[i];
bt[i]=bt[k];
bt[k]=temp;

}

wt[0] = wtavg = 0;
tat[0] = tatavg = bt[0];
for(i=1;i<n;i++)
{

temp=p[i];
p[i]=p[k];
p[k]=temp;

wt[i] = wt[i-1] +bt[i-1];
tat[i] = tat[i-1] +bt[i];
wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];

}
printf("\n\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");
for(i=0;i<n;i++)

4

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", p[i], bt[i], wt[i], tat[i]);
printf("\nAverage Waiting Time -- %f", wtavg/n);
printf("\nAverage Turnaround Time -- %f", tatavg/n);
getch();

}

INPUT

Enter the number of processes -- 4
Enter Burst Time for Process 0 -- 6
Enter Burst Time for Process 1 -- 8
Enter Burst Time for Process 2 -- 7
Enter Burst Time for Process 3 -- 3

OUTPUT

PROCESS BURST TIME WAITING TIME TURNAROUND TIME
P3 3 0 3
P0 6 3 9
P2 7 9 16
P1 8 16 24

Average Waiting Time -- 7.000000
Average Turnaround Time -- 13.000000

1.3.3 ROUND ROBIN CPU SCHEDULING ALGORITHM
#include<stdio.h>
main()
{

int i,j,n,bu[10],wa[10],tat[10],t,ct[10],max;
float awt=0,att=0,temp=0;
clrscr();
printf("Enter the no of processes -- ");
scanf("%d",&n);

for(i=0;i<n;i++)
{

printf("\nEnter Burst Time for process %d -- ", i+1);
scanf("%d",&bu[i]);
ct[i]=bu[i];

}
printf("\nEnter the size of time slice -- ");
scanf("%d",&t);
max=bu[0];
for(i=1;i<n;i++)

if(max<bu[i])
max=bu[i];

for(j=0;j<(max/t)+1;j++)
for(i=0;i<n;i++)

if(bu[i]!=0)
if(bu[i]<=t)
{

for(i=0;i<n;i++)
{

}
else
{

}

tat[i]=temp+bu[i];
temp=temp+bu[i];
bu[i]=0;

bu[i]=bu[i]-t;
temp=temp+t;

wa[i]=tat[i]-ct[i];
att+=tat[i];

5

awt+=wa[i];
}
printf("\nThe Average Turnaround time is -- %f",att/n);
printf("\nThe Average Waiting time is -- %f ",awt/n);
printf("\n\tPROCESS\t BURST TIME \t WAITING TIME\tTURNAROUND TIME\n");
for(i=0;i<n;i++)

printf("\t%d \t %d \t\t %d \t\t %d \n",i+1,ct[i],wa[i],tat[i]);
getch();

}
INPUT
Enter the no of processes – 3
Enter Burst Time for process 1 – 24
Enter Burst Time for process 2 -- 3
Enter Burst Time for process 3 -- 3

Enter the size of time slice – 3

OUTPUT
The Average Turnaround time is – 15.666667
The Average Waiting time is -- 5.666667

PROCESS BURST TIME WAITING TIME TURNAROUND TIME
1 24 6 30
2 3 4 7
3 3 7 10

1.3.4 PRIORITY CPU SCHEDULING ALGORITHM
#include<stdio.h>
main()
{

int p[20],bt[20],pri[20], wt[20],tat[20],i, k, n, temp;
float wtavg, tatavg;
clrscr();
printf("Enter the number of processes --- ");
scanf("%d",&n);

for(i=0;i<n;i++)
{

p[i] = i;
printf("Enter the Burst Time & Priority of Process %d --- ",i);
scanf("%d %d",&bt[i], &pri[i]);

}
for(i=0;i<n;i++)

for(k=i+1;k<n;k++)
if(pri[i] > pri[k])
{

temp=p[i];
p[i]=p[k];
p[k]=temp;

temp=bt[i];
bt[i]=bt[k];
bt[k]=temp;

temp=pri[i];
pri[i]=pri[k];
pri[k]=temp;

}
wtavg = wt[0] = 0;
tatavg = tat[0] = bt[0];

6

for(i=1;i<n;i++)
{

wt[i] = wt[i-1] + bt[i-1];
tat[i] = tat[i-1] + bt[i];

wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];

}

printf("\nPROCESS\t\tPRIORITY\tBURST TIME\tWAITING TIME\tTURNAROUND TIME");
for(i=0;i<n;i++)

printf("\n%d \t\t %d \t\t %d \t\t %d \t\t %d ",p[i],pri[i],bt[i],wt[i],tat[i]);

printf("\nAverage Waiting Time is --- %f",wtavg/n);
printf("\nAverage Turnaround Time is --- %f",tatavg/n);
getch();

}

INPUT

Enter the number of processes -- 5
Enter the Burst Time & Priority of Process 0 --- 10

3

Enter the Burst Time & Priority of Process 1 --- 1 1
Enter the Burst Time & Priority of Process 2 --- 2 4
Enter the Burst Time & Priority of Process 3 --- 1 5
Enter the Burst Time & Priority of Process 4 --- 5 2

OUTPUT
PROCESS

PRIORITY

BURST TIME

WAITING TIME

TURNAROUND TIME
1 1 1 0 1
4 2 5 1 6
0 3 10 6 16
2 4 2 16 18
3 5 1 18 19

Average Waiting Time is --- 8.200000
Average Turnaround Time is --- 12.000000

7

EXPERIMENT 2

2.1 OBJECTIVE
*Write a C program to simulate multi-level queue scheduling algorithm considering the following scenario. All
the processes in the system are divided into two categories – system processes and user processes. System
processes are to be given higher priority than user processes. The priority of each process ranges from 1 to 3.
Use fixed priority scheduling for all the processes.

2.2 DESCRIPTION
Multi-level queue scheduling algorithm is used in scenarios where the processes can be classified into groups
based on property like process type, CPU time, IO access, memory size, etc. In a multi-level queue scheduling
algorithm, there will be 'n' number of queues, where 'n' is the number of groups the processes are classified
into. Each queue will be assigned a priority and will have its own scheduling algorithm like round-robin
scheduling or FCFS. For the process in a queue to execute, all the queues of priority higher than it should be
empty, meaning the process in those high priority queues should have completed its execution. In this
scheduling algorithm, once assigned to a queue, the process will not move to any other queues.

2.3 PROGRAM

main()
{
int p[20],bt[20], su[20], wt[20],tat[20],i, k, n, temp;
float wtavg, tatavg;
clrscr();
printf("Enter the number of processes --- ");
scanf("%d",&n);

for(i=0;i<n;i++)
{

p[i] = i;
printf("Enter the Burst Time of Process %d --- ", i);
scanf("%d",&bt[i]);
printf("System/User Process (0/1) ? --- ");
scanf("%d", &su[i]);

}
for(i=0;i<n;i++)

for(k=i+1;k<n;k++)
if(su[i] > su[k])
{

temp=p[i];
p[i]=p[k];
p[k]=temp;

temp=bt[i];
bt[i]=bt[k];
bt[k]=temp;

temp=su[i];
su[i]=su[k];
su[k]=temp;

}
wtavg = wt[0] = 0;
tatavg = tat[0] = bt[0];

for(i=1;i<n;i++)
{

wt[i] = wt[i-1] + bt[i-1];
tat[i] = tat[i-1] + bt[i];

8

wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];

}

printf("\nPROCESS\t\t SYSTEM/USER PROCESS \tBURST TIME\tWAITING TIME\tTURNAROUND TIME");
for(i=0;i<n;i++)

printf("\n%d \t\t %d \t\t %d \t\t %d \t\t %d ",p[i],su[i],bt[i],wt[i],tat[i]);

printf("\nAverage Waiting Time is --- %f",wtavg/n);
printf("\nAverage Turnaround Time is --- %f",tatavg/n);
getch();

}

INPUT
Enter the number of processes --- 4
Enter the Burst Time of Process 0 --- 3
System/User Process (0/1) ? --- 1
Enter the Burst Time of Process 1 --- 2
System/User Process (0/1) ? --- 0
Enter the Burst Time of Process 2 --- 5
System/User Process (0/1) ? --- 1
Enter the Burst Time of Process 3 --- 1
System/User Process (0/1) ? --- 0

OUTPUT
PROCESS

SYSTEM/USER PROCESS

BURST TIME

WAITING TIME

TURNAROUND TIME
1 0 2 0 2
3 0 1 2 3
2 1 5 3 8
0 1 3 8 11

Average Waiting Time is --- 3.250000
Average Turnaround Time is --- 6.000000

9

EXPERIMENT 3

3.1 OBJECTIVE
Write a C program to simulate the following file allocation strategies.
a) Sequential b) Linked c)) Indexed

3.2 DESCRIPTION
A file is a collection of data, usually stored on disk. As a logical entity, a file enables to divide data into
meaningful groups. As a physical entity, a file should be considered in terms of its organization. The term "file
organization" refers to the way in which data is stored in a file and, consequently, the method(s) by which it can
be accessed.

3.2.1 SEQUENTIAL FILE ALLOCATION

In this file organization, the records of the file are stored one after another both physically and logically. That is,
record with sequence number 16 is located just after the 15th record. A record of a sequential file can only be
accessed by reading all the previous records.

3.2.2 LINKED FILE ALLOCATION
With linked allocation, each file is a linked list of disk blocks; the disk blocks may be scattered anywhere on the
disk. The directory contains a pointer to the first and last blocks of the file. Each block contains a pointer to the
next block.

3.2.3 INDEXED FILE ALLOCATION

Indexed file allocation strategy brings all the pointers together into one location: an index block. Each file has its
own index block, which is an array of disk-block addresses. The ith entry in the index block points to the ith block
of the file. The directory contains the address of the index block. To find and read the ith block, the pointer in the
ith index-block entry is used.

3.3 PROGRAM

3.3.1 SEQUENTIAL FILE ALLOCATION
#include<stdio.h>
#include<conio.h>

struct fileTable
{

char name[20];
int sb, nob;

}ft[30];

void main()
{

int i, j, n;
char s[20];
clrscr();
printf("Enter no of files :");
scanf("%d",&n);

for(i=0;i<n;i++)
{

printf("\nEnter file name %d :",i+1);
scanf("%s",ft[i].name);
printf("Enter starting block of file %d :",i+1);
scanf("%d",&ft[i].sb);
printf("Enter no of blocks in file %d :",i+1);
scanf("%d",&ft[i].nob);

}
printf("\nEnter the file name to be searched -- ");
scanf("%s",s);
for(i=0;i<n;i++)

if(strcmp(s, ft[i].name)==0)

10

if(i==n)

else
{

}
getch();

}

break;

printf("\nFile Not Found");

printf("\nFILE NAME START BLOCK NO OF BLOCKS BLOCKS OCCUPIED\n");
printf("\n%s\t\t%d\t\t%d\t",ft[i].name,ft[i].sb,ft[i].nob);
for(j=0;j<ft[i].nob;j++)

printf("%d, ",ft[i].sb+j);

INPUT:
Enter no of files :3

Enter file name 1 :A
Enter starting block of file 1 :85
Enter no of blocks in file 1 :6

Enter file name 2 :B
Enter starting block of file 2 :102
Enter no of blocks in file 2 :4

Enter file name 3 :C
Enter starting block of file 3 :60
Enter no of blocks in file 3 :4
Enter the file name to be searched -- B

OUTPUT:
FILE NAME START BLOCK

NO OF BLOCKS

BLOCKS OCCUPIED
B 102 4 102, 103, 104, 105

3.3.2 LINKED FILE ALLOCATION

#include<stdio.h>
#include<conio.h>

struct fileTable
{
char name[20];

int nob;
struct block *sb;
}ft[30];

struct block
{

int bno;
struct block *next;

};

void main()
{

int i, j, n;
char s[20];
struct block *temp;
clrscr();
printf("Enter no of files :");
scanf("%d",&n);
for(i=0;i<n;i++)
{

printf("\nEnter file name %d :",i+1);
scanf("%s",ft[i].name);

11

printf("Enter no of blocks in file %d :",i+1);
scanf("%d",&ft[i].nob);
ft[i].sb=(struct block*)malloc(sizeof(struct block));
temp = ft[i].sb;
printf("Enter the blocks of the file :");
scanf("%d",&temp->bno);
temp->next=NULL;

for(j=1;j<ft[i].nob;j++)
{

temp->next = (struct block*)malloc(sizeof(struct block));
temp = temp->next;
scanf("%d",&temp->bno);

}
temp->next = NULL;

}
printf("\nEnter the file name to be searched -- ");
scanf("%s",s);
for(i=0;i<n;i++)

if(strcmp(s, ft[i].name)==0)
break;

if(i==n)

else
{

printf("\nFile Not Found");

printf("\nFILE NAME NO OF BLOCKS BLOCKS OCCUPIED");
printf("\n %s\t\t%d\t",ft[i].name,ft[i].nob);
temp=ft[i].sb;
for(j=0;j<ft[i].nob;j++)
{

printf("%d ",temp->bno);
temp = temp->next;

}
}
getch();

}

INPUT:
Enter no of files 2

Enter file 1 : A
Enter no of blocks in file 1 4
Enter the blocks of the file 1 : 12 23 9 4

Enter file 2 : G
Enter no of blocks in file 2 5
Enter the blocks of the file 2 88 77 66 55 44

Enter the file to be searched : G

OUTPUT:
FILE NAME NO OF BLOCKS BLOCKS OCCUPIED
G 5 88 77 66 55 44

3.3.3 INDEXED FILE ALLOCATION
#include<stdio.h>
#include<conio.h>

struct fileTable
{
char name[20];
int nob, blocks[30];

12

}ft[30];

void main()
{

int i, j, n;
char s[20];
clrscr();
printf("Enter no of files :");
scanf("%d",&n);
for(i=0;i<n;i++)
{

printf("\nEnter file name %d :",i+1);
scanf("%s",ft[i].name);
printf("Enter no of blocks in file %d :",i+1);
scanf("%d",&ft[i].nob);
printf("Enter the blocks of the file :");
for(j=0;j<ft[i].nob;j++)

scanf("%d",&ft[i].blocks[j]);
}

printf("\nEnter the file name to be searched -- ");
scanf("%s",s);
for(i=0;i<n;i++)

if(strcmp(s, ft[i].name)==0)
break;

if(i==n)

else
{

}
getch();

}

printf("\nFile Not Found");

printf("\nFILE NAME NO OF BLOCKS BLOCKS OCCUPIED");
printf("\n %s\t\t%d\t",ft[i].name,ft[i].nob);
for(j=0;j<ft[i].nob;j++)

printf("%d, ",ft[i].blocks[j]);

INPUT:
Enter no of files 2

Enter file 1 : A
Enter no of blocks in file 1 4
Enter the blocks of the file 1 : 12 23 9 4

Enter file 2 : G
Enter no of blocks in file 2 5
Enter the blocks of the file 2 88 77 66 55 44
Enter the file to be searched : G

OUTPUT:
FILE NAME NO OF BLOCKS BLOCKS OCCUPIED
G 5 88, 77, 66, 55, 44

13

EXPERIMENT 4

4.1 OBJECTIVE
Write a C program to simulate the MVT and MFT memory management techniques

4.2 DESCRIPTION
MFT (Multiprogramming with a Fixed number of Tasks) is one of the old memory management techniques in
which the memory is partitioned into fixed size partitions and each job is assigned to a partition. The memory
assigned to a partition does not change. MVT (Multiprogramming with a Variable number of Tasks) is the
memory management technique in which each job gets just the amount of memory it needs. That is, the
partitioning of memory is dynamic and changes as jobs enter and leave the system. MVT is a more ``efficient''
user of resources. MFT suffers with the problem of internal fragmentation and MVT suffers with external
fragmentation.

4.3 PROGRAM

4.3.1 MFT MEMORY MANAGEMENT TECHNIQUE
#include<stdio.h>
#include<conio.h>

main()
{
int ms, bs, nob, ef,n, mp[10],tif=0;
int i,p=0;

clrscr();
printf("Enter the total memory available (in Bytes) -- ");
scanf("%d",&ms);
printf("Enter the block size (in Bytes) -- ");
scanf("%d", &bs);
nob=ms/bs;
ef=ms - nob*bs;
printf("\nEnter the number of processes -- ");
scanf("%d",&n);
for(i=0;i<n;i++)
{

printf("Enter memory required for process %d (in Bytes)-- ",i+1);
scanf("%d",&mp[i]);

}

printf("\nNo. of Blocks available in memory -- %d",nob);
printf("\n\nPROCESS\tMEMORY REQUIRED\t ALLOCATED\tINTERNAL FRAGMENTATION");
for(i=0;i<n && p<nob;i++)
{

printf("\n %d\t\t%d",i+1,mp[i]);
if(mp[i] > bs)

printf("\t\tNO\t\t---");

}
if(i<n)

else
{

}

printf("\t\tYES\t%d",bs-mp[i]);
tif = tif + bs-mp[i];
p++;

printf("\nMemory is Full, Remaining Processes cannot be accomodated");

printf("\n\nTotal Internal Fragmentation is %d",tif);
printf("\nTotal External Fragmentation is %d",ef);
getch();

14

}

INPUT
Enter the total memory available (in Bytes) -- 1000
Enter the block size (in Bytes) ------- 300
Enter the number of processes – 5

Enter memory required for process 1 (in Bytes) -- 275
Enter memory required for process 2 (in Bytes) -- 400
Enter memory required for process 3 (in Bytes) -- 290
Enter memory required for process 4 (in Bytes) -- 293
Enter memory required for process 5 (in Bytes) -- 100

No. of Blocks available in memory -- 3

OUTPUT
PROCESS

MEMORY REQUIRED

ALLOCATED

INTERNAL FRAGMENTATION
1 275 YES 25
2 400 NO -----
3 290 YES 10
4 293 YES 7

Memory is Full, Remaining Processes cannot be accommodated
Total Internal Fragmentation is 42
Total External Fragmentation is 100

4.3.2 MVT MEMORY MANAGEMENT TECHNIQUE
#include<stdio.h>
#include<conio.h>

main()
{
int ms,mp[10],i, temp,n=0;
char ch = 'y';

clrscr();
printf("\nEnter the total memory available (in Bytes)-- ");
scanf("%d",&ms);
temp=ms;
for(i=0;ch=='y';i++,n++)
{

printf("\nEnter memory required for process %d (in Bytes) -- ",i+1);
scanf("%d",&mp[i]);
if(mp[i]<=temp)
{

}
else
{

}

printf("\nMemory is allocated for Process %d ",i+1);
temp = temp - mp[i];

printf("\nMemory is Full");
break;

printf("\nDo you want to continue(y/n) -- ");
scanf(" %c", &ch);

}
printf("\n\nTotal Memory Available -- %d", ms);

printf("\n\n\tPROCESS\t\t MEMORY ALLOCATED ");
for(i=0;i<n;i++)

printf("\n \t%d\t\t%d",i+1,mp[i]);
printf("\n\nTotal Memory Allocated is %d",ms-temp);
printf("\nTotal External Fragmentation is %d",temp);

15

getch();

}

INPUT
Enter the total memory available (in Bytes) -- 1000

Enter memory required for process 1 (in Bytes) -- 400
Memory is allocated for Process 1

Do you want to continue(y/n) -- y

Enter memory required for process 2 (in Bytes) -- 275
Memory is allocated for Process 2

Do you want to continue(y/n) -- y

Enter memory required for process 3 (in Bytes) -- 550

OUTPUT
Memory is Full

Total Memory Available – 1000

PROCESS MEMORY ALLOCATED
1 400
2 275

Total Memory Allocated is 675
Total External Fragmentation is 325

16

EXPERIMENT 5

5.1 OBJECTIVE
*Write a C program to simulate the following contiguous memory allocation techniques
a) Worst-fit b) Best-fit c) First-fit

5.2 DESCRIPTION
One of the simplest methods for memory allocation is to divide memory into several fixed-sized partitions. Each
partition may contain exactly one process. In this multiple-partition method, when a partition is free, a process is
selected from the input queue and is loaded into the free partition. When the process terminates, the partition
becomes available for another process. The operating system keeps a table indicating which parts of memory
are available and which are occupied. Finally, when a process arrives and needs memory, a memory section
large enough for this process is provided. When it is time to load or swap a process into main memory, and if
there is more than one free block of memory of sufficient size, then the operating system must decide which
free block to allocate. Best-fit strategy chooses the block that is closest in size to the request. First-fit chooses
the first available block that is large enough. Worst-fit chooses the largest available block.

5.3 PROGRAM

5.3.1 WORST-FIT
#include<stdio.h>
#include<conio.h>
#define max 25

void main()
{

int frag[max],b[max],f[max],i,j,nb,nf,temp;
static int bf[max],ff[max];
clrscr();

printf("\n\tMemory Management Scheme - First Fit");
printf("\nEnter the number of blocks:");
scanf("%d",&nb);
printf("Enter the number of files:");
scanf("%d",&nf);
printf("\nEnter the size of the blocks:-\n");
for(i=1;i<=nb;i++)
{

printf("Block %d:",i);
scanf("%d",&b[i]);

}
printf("Enter the size of the files :-\n");
for(i=1;i<=nf;i++)
{

printf("File %d:",i);
scanf("%d",&f[i]);

}
for(i=1;i<=nf;i++)
{

for(j=1;j<=nb;j++)
{

if(bf[j]!=1)
{

temp=b[j]-f[i];
if(temp>=0)
{

ff[i]=j;
break;

}
}

}

17

frag[i]=temp;
bf[ff[i]]=1;

}
printf("\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement");
for(i=1;i<=nf;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);
getch();

}
INPUT
Enter the number of blocks: 3
Enter the number of files: 2

Enter the size of the blocks:-
Block 1: 5
Block 2: 2
Block 3: 7

Enter the size of the files:-
File 1: 1
File 2: 4

OUTPUT

File No File Size Block No Block Size Fragment
1 1 1 5 4
2 4 3 7 3

5.3.2 BEST-FIT

#include<stdio.h>
#include<conio.h>
#define max 25

void main()
{

int frag[max],b[max],f[max],i,j,nb,nf,temp,lowest=10000;
static int bf[max],ff[max];
clrscr();

printf("\nEnter the number of blocks:");
scanf("%d",&nb);
printf("Enter the number of files:");
scanf("%d",&nf);
printf("\nEnter the size of the blocks:-\n");
for(i=1;i<=nb;i++)

printf("Block %d:",i);scanf("%d",&b[i]);

printf("Enter the size of the files :-\n");
for(i=1;i<=nf;i++)
{

printf("File %d:",i);
scanf("%d",&f[i]);

}
for(i=1;i<=nf;i++)
{

for(j=1;j<=nb;j++)
{

if(bf[j]!=1)
{

temp=b[j]-f[i];
if(temp>=0)

if(lowest>temp)
{

ff[i]=j;

18

lowest=temp;
}

}
}
frag[i]=lowest;
bf[ff[i]]=1;
lowest=10000;

}
printf("\nFile No\tFile Size \tBlock No\tBlock Size\tFragment");
for(i=1;i<=nf && ff[i]!=0;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);
getch();

}

INPUT
Enter the number of blocks: 3
Enter the number of files: 2

Enter the size of the blocks:-
Block 1: 5
Block 2: 2
Block 3: 7

Enter the size of the files:-
File 1: 1
File 2: 4

OUTPUT
File No File Size

Block No

Block Size

Fragment
1 1 2 2 1
2 4 1 5 1

5.3.3 FIRST-FIT

#include<stdio.h>
#include<conio.h>
#define max 25

void main()
{

int frag[max],b[max],f[max],i,j,nb,nf,temp,highest=0;
static int bf[max],ff[max];
clrscr();

printf("\n\tMemory Management Scheme - Worst Fit");
printf("\nEnter the number of blocks:");
scanf("%d",&nb);
printf("Enter the number of files:");
scanf("%d",&nf);
printf("\nEnter the size of the blocks:-\n");
for(i=1;i<=nb;i++)
{

printf("Block %d:",i);
scanf("%d",&b[i]);

}
printf("Enter the size of the files :-\n");
for(i=1;i<=nf;i++)
{

printf("File %d:",i);
scanf("%d",&f[i]);

}
for(i=1;i<=nf;i++)
{

19

for(j=1;j<=nb;j++)
{

if(bf[j]!=1) //if bf[j] is not allocated
{

temp=b[j]-f[i];
if(temp>=0)

if(highest<temp)
{

}
}

frag[i]=highest;
bf[ff[i]]=1;
highest=0;

}

ff[i]=j;
highest=temp;

}

printf("\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement");
for(i=1;i<=nf;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);
getch();

}

INPUT
Enter the number of blocks: 3
Enter the number of files: 2

Enter the size of the blocks:-
Block 1: 5
Block 2: 2
Block 3: 7

Enter the size of the files:-
File 1: 1
File 2: 4

OUTPUT

File No File Size Block No Block Size Fragment
1 1 3 7 6
2 4 1 5 1

20

EXPERIMENT 6

6.1 OBJECTIVE
Write a C program to simulate paging technique of memory management.

6.2 DESCRIPTION
In computer operating systems, paging is one of the memory management schemes by which a computer stores
and retrieves data from the secondary storage for use in main memory. In the paging memory-management
scheme, the operating system retrieves data from secondary storage in same-size blocks called pages. Paging is a
memory-management scheme that permits the physical address space a process to be noncontiguous. The basic
method for implementing paging involves breaking physical memory into fixed-sized blocks called frames and
breaking logical memory into blocks of the same size called pages. When a process is to be executed, its pages
are loaded into any available memory frames from their source.

6.3 PROGRAM
#include<stdio.h>
#include<conio.h>

main()
{

int ms, ps, nop, np, rempages, i, j, x, y, pa, offset;
int s[10], fno[10][20];

printf("\nMemory is Full");
break;

}
rempages = rempages - s[i];

printf("\nEnter pagetable for p[%d] --- ",i);
for(j=0;j<s[i];j++)

scanf("%d",&fno[i][j]);
}

printf("\nEnter Logical Address to find Physical Address ");
printf("\nEnter process no. and pagenumber and offset -- ");

scanf("%d %d %d",&x,&y, &offset);

21

if(x>np || y>=s[i] || offset>=ps)
printf("\nInvalid Process or Page Number or offset");

else
{

}
getch();

}

pa=fno[x][y]*ps+offset;
printf("\nThe Physical Address is -- %d",pa);

INPUT
Enter the memory size – 1000
Enter the page size -- 100
The no. of pages available in memory are ---- 10

Enter number of processes -- 3
Enter no. of pages required for p[1]-- 4
Enter pagetable for p[1] --- 8 6

9

5

Enter no. of pages required for p[2]-- 5

Enter pagetable for p[2] --- 1 4 5 7 3

Enter no. of pages required for p[3]-- 5

OUTPUT

Memory is Full

Enter Logical Address to find Physical Address
Enter process no. and pagenumber and offset -- 2

3

60

The Physical Address is -- 760

22

EXPERIMENT 7

7.1 OBJECTIVE
Write a C program to simulate the following file organization techniques
a) Single level directory b) Two level directory c) Hierarchical

7.2 DESCRIPTION
The directory structure is the organization of files into a hierarchy of folders. In a single-level directory system,
all the files are placed in one directory. There is a root directory which has all files. It has a simple architecture
and there are no sub directories. Advantage of single level directory system is that it is easy to find a file in the
directory. In the two-level directory system, each user has own user file directory (UFD). The system maintains a
master block that has one entry for each user. This master block contains the addresses of the directory of the
users. When a user job starts or a user logs in, the system's master file directory (MFD) is searched. When a user
refers to a particular file, only his own UFD is searched. This effectively solves the name collision problem and
isolates users from one another. Hierarchical directory structure allows users to create their own subdirectories
and to organize their files accordingly. A tree is the most common directory structure. The tree has a root
directory, and every file in the system has a unique path name. A directory (or subdirectory) contains a set of
files or subdirectories.

7.3 PROGRAM

7.3.1 SINGLE LEVEL DIRECTORY ORGANIZATION
#include<stdio.h>
struct
{

char dname[10],fname[10][10];
int fcnt;

}dir;

void main()
{

int i,ch;
char f[30];
clrscr();
dir.fcnt = 0;
printf("\nEnter name of directory -- ");
scanf("%s", dir.dname);
while(1)
{

printf("\n\n1. Create File\t2. Delete File\t3. Search File \n
4. Display Files\t5. Exit\nEnter your choice -- ");

scanf("%d",&ch);
switch(ch)
{

case 1: printf("\nEnter the name of the file -- ");
scanf("%s",dir.fname[dir.fcnt]);
dir.fcnt++;
break;

case 2: printf("\nEnter the name of the file -- ");
scanf("%s",f);
for(i=0;i<dir.fcnt;i++)
{

if(strcmp(f, dir.fname[i])==0)
{

printf("File %s is deleted ",f);
strcpy(dir.fname[i],dir.fname[dir.fcnt-1]);
break;

}
}
if(i==dir.fcnt)

printf("File %s not found",f);

23

else

break;

dir.fcnt--;

case 3: printf("\nEnter the name of the file -- ");
scanf("%s",f);
for(i=0;i<dir.fcnt;i++)
{

if(strcmp(f, dir.fname[i])==0)
{

printf("File %s is found ", f);
break;

}
}
if(i==dir.fcnt)

printf("File %s not found",f);
break;

case 4: if(dir.fcnt==0)
printf("\nDirectory Empty");

else
{

}
break;

default: exit(0);
}

printf("\nThe Files are -- ");
for(i=0;i<dir.fcnt;i++)

printf("\t%s",dir.fname[i]);

}
getch();

}

OUTPUT:
Enter name of directory -- CSE
1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- A

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- B

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- C
1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 4

The Files are -- A B C

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 3

Enter the name of the file – ABC
File ABC not found

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 2

24

Enter the name of the file – B
File B is deleted

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 5

7.3.2 TWO LEVEL DIRECTORY ORGANIZATION

#include<stdio.h>
struct
{

char dname[10],fname[10][10];
int fcnt;

}dir[10];

void main()
{

int i,ch,dcnt,k;
char f[30], d[30];
clrscr();
dcnt=0;

while(1)
{

printf("\n\n1. Create Directory\t2. Create File\t3. Delete File");
printf("\n4. Search File\t\t5. Display\t6. Exit\t

scanf("%d",&ch);
switch(ch)
{

Enter your choice -- ");

case 1: printf("\nEnter name of directory -- ");
scanf("%s", dir[dcnt].dname);
dir[dcnt].fcnt=0;
dcnt++;
printf("Directory created");
break;

case 2: printf("\nEnter name of the directory -- ");
scanf("%s",d);
for(i=0;i<dcnt;i++)

if(strcmp(d,dir[i].dname)==0)
{

}
if(i==dcnt)

printf("Enter name of the file -- ");
scanf("%s",dir[i].fname[dir[i].fcnt]);
dir[i].fcnt++;
printf("File created");
break;

printf("Directory %s not found",d);
break;

case 3: printf("\nEnter name of the directory -- ");
scanf("%s",d);
for(i=0;i<dcnt;i++)
{
if(strcmp(d,dir[i].dname)==0)
{

printf("Enter name of the file -- ");
scanf("%s",f);
for(k=0;k<dir[i].fcnt;k++)
{

if(strcmp(f, dir[i].fname[k])==0)

25

{
printf("File %s is deleted ",f);
dir[i].fcnt--;
strcpy(dir[i].fname[k],dir[i].fname[dir[i].fcnt]);
goto jmp;
}

}
printf("File %s not found",f);
goto jmp;

}
}
printf("Directory %s not found",d);
jmp : break;

case 4: printf("\nEnter name of the directory -- ");

scanf("%s",d);
for(i=0;i<dcnt;i++)
{

if(strcmp(d,dir[i].dname)==0)
{

printf("Enter the name of the file -- ");
scanf("%s",f);
for(k=0;k<dir[i].fcnt;k++)
{

if(strcmp(f, dir[i].fname[k])==0)
{
printf("File %s is found ",f);
goto jmp1;
}

}
printf("File %s not found",f);
goto jmp1;

}
}
printf("Directory %s not found",d);

jmp1: break;
case 5: if(dcnt==0)

printf("\nNo Directory's ");
else
{

printf("\nDirectory\tFiles");
for(i=0;i<dcnt;i++)
{

}
}
break;

default:exit(0);
}

printf("\n%s\t\t",dir[i].dname);
for(k=0;k<dir[i].fcnt;k++)

printf("\t%s",dir[i].fname[k]);

}
getch();

}

OUTPUT:
1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit Enter your choice -- 1

Enter name of directory -- DIR1
Directory created

26

1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit Enter your choice -- 1
Enter name of directory -- DIR2
Directory created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 2

Enter name of the directory – DIR1
Enter name of the file -- A1
File created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 2

Enter name of the directory – DIR1
Enter name of the file -- A2
File created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 2

Enter name of the directory – DIR2
Enter name of the file -- B1
File created

1. Create Directory
4. Search File

2. Create File
5. Display

3. Delete File
6. Exit Enter your choice --

5

Directory
DIR1

Files
A1

A2

DIR2 B1

1. Create Directory
4. Search File

2. Create File
5. Display

3. Delete File
6. Exit Enter your choice --

4

Enter name of the directory – DIR
Directory not found

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 3

Enter name of the directory – DIR1
Enter name of the file -- A2
File A2 is deleted

1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit Enter your choice -- 6

7.3.3 HIERARCHICAL DIRECTORY ORGANIZATION
#include<stdio.h>
#include<graphics.h>
struct tree_element
{

char name[20];
int x, y, ftype, lx, rx, nc, level;
struct tree_element *link[5];

};
typedef struct tree_element node;
void main()
{

27

int gd=DETECT,gm;
node *root;
root=NULL;
clrscr();
create(&root,0,"root",0,639,320);
clrscr();
initgraph(&gd,&gm,"c:\tc\BGI");
display(root);
getch();
closegraph();

}
create(node **root,int lev,char *dname,int lx,int rx,int x)
{

int i, gap;
if(*root==NULL)
{

(*root)=(node *)malloc(sizeof(node));
printf("Enter name of dir/file(under %s) : ",dname);
fflush(stdin);
gets((*root)->name);
printf("enter 1 for Dir/2 for file :");
scanf("%d",&(*root)->ftype);
(*root)->level=lev;
(*root)->y=50+lev*50;
(*root)->x=x;
(*root)->lx=lx;
(*root)->rx=rx;
for(i=0;i<5;i++)

(*root)->link[i]=NULL;
if((*root)->ftype==1)
{

printf("No of sub directories/files(for %s):",(*root)->name); scanf("%d",&(*root)>nc);
if((*root)->nc==0)

gap=rx-lx;
else

gap=(rx-lx)/(*root)->nc;

}
else

}
}

for(i=0;i<(*root)->nc;i++)
create(&((*root)>link[i]),lev+1,(*root)>name,lx+gap*i,lx+gap*i+gap,

lx+gap*i+gap/2);

(*root)->nc=0;

display(node *root)
{

int i;
settextstyle(2,0,4);
settextjustify(1,1);
setfillstyle(1,BLUE);
setcolor(14);
if(root !=NULL)
{

for(i=0;i<root->nc;i++)
line(root->x,root->y,root->link[i]->x,root->link[i]->y);
if(root->ftype==1)
bar3d(root->x-20,root->y-10,root->x+20,root>y+10,0,0);
else
fillellipse(root->x,root->y,20,20);
outtextxy(root->x,root->y,root->name);
for(i=0;i<root->nc;i++)
display(root->link[i]);

28

}
}

INPUT
Enter Name of dir/file(under root): ROOT
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for ROOT): 2
Enter Name of dir/file(under ROOT): USER1
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for USER1): 1
Enter Name of dir/file(under USER1): SUBDIR1
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for SUBDIR1): 2
Enter Name of dir/file(under USER1): JAVA
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for JAVA): 0
Enter Name of dir/file(under SUBDIR1): VB
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for VB): 0
Enter Name of dir/file(under ROOT): USER2
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for USER2): 2
Enter Name of dir/file(under ROOT): A
Enter 1 for Dir/2 for File: 2
Enter Name of dir/file(under USER2): SUBDIR2
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for SUBDIR2): 2
Enter Name of dir/file(under SUBDIR2): PPL
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for PPL): 2
Enter Name of dir/file(under PPL): B
Enter 1 for Dir/2 for File: 2
Enter Name of dir/file(under PPL): C
Enter 1 for Dir/2 for File: 2
Enter Name of dir/file(under SUBDIR): AI
Enter 1 for Dir/2 for File: 1
No of subdirectories/files(for AI): 2
Enter Name of dir/file(under AI): D
Enter 1 for Dir/2 for File: 2
Enter Name of dir/file(under AI): E
Enter 1 for Dir/2 for File: 2

OUTPUT

A SUBDIR

B C

PPL

D E

AI

USER1 USER2

ROOT

SUBDIR

VB JAVA

29

EXPERIMENT 8

8.1 OBJECTIVE
Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance.

8.2 DESCRIPTION
In a multiprogramming environment, several processes may compete for a finite number of resources. A process
requests resources; if the resources are not available at that time, the process enters a waiting state.
Sometimes, a waiting process is never again able to change state, because the resources it has requested are
held by other waiting processes. This situation is called a deadlock. Deadlock avoidance is one of the techniques
for handling deadlocks. This approach requires that the operating system be given in advance additional
information concerning which resources a process will request and use during its lifetime. With this additional
knowledge, it can decide for each request whether or not the process should wait. To decide whether the
current request can be satisfied or must be delayed, the system must consider the resources currently available,
the resources currently allocated to each process, and the future requests and releases of each process.
Banker’s algorithm is a deadlock avoidance algorithm that is applicable to a system with multiple instances of
each resource type.

8.3 PROGRAM
#include<stdio.h>
struct file
{

int all[10];
int max[10];
int need[10];
int flag;

};
void main()
{

struct file f[10];
int fl;
int i, j, k, p, b, n, r, g, cnt=0, id, newr;
int avail[10],seq[10];
clrscr();
printf("Enter number of processes -- ");
scanf("%d",&n);
printf("Enter number of resources -- ");
scanf("%d",&r);
for(i=0;i<n;i++)
{

printf("Enter details for P%d",i);
printf("\nEnter allocation\t -- \t");
for(j=0;j<r;j++)

scanf("%d",&f[i].all[j]);
printf("Enter Max\t\t -- \t");
for(j=0;j<r;j++)

scanf("%d",&f[i].max[j]);
f[i].flag=0;

}
printf("\nEnter Available Resources\t -- \t");
for(i=0;i<r;i++)

scanf("%d",&avail[i]);

printf("\nEnter New Request Details -- ");
printf("\nEnter pid \t -- \t");
scanf("%d",&id);
printf("Enter Request for Resources \t -- \t");
for(i=0;i<r;i++)
{

scanf("%d",&newr);
f[id].all[i] += newr;

30

avail[i]=avail[i] - newr;
}

for(i=0;i<n;i++)
{

for(j=0;j<r;j++)
{

}
}
cnt=0;
fl=0;

f[i].need[j]=f[i].max[j]-f[i].all[j];
if(f[i].need[j]<0)

f[i].need[j]=0;

while(cnt!=n)
{

g=0;
for(j=0;j<n;j++)
{

if(f[j].flag==0)
{

b=0;
for(p=0;p<r;p++)
{

if(avail[p]>=f[j].need[p])
b=b+1;

}
if(b==r)
{

else
b=b-1;

printf("\nP%d is visited",j);
seq[fl++]=j;
f[j].flag=1;
for(k=0;k<r;k++)

avail[k]=avail[k]+f[j].all[k];
cnt=cnt+1;
printf("(");
for(k=0;k<r;k++)

printf("%3d",avail[k]);
printf(")");
g=1;

}
}

}
if(g==0)
{

printf("\n REQUEST NOT GRANTED -- DEADLOCK OCCURRED");
printf("\n SYSTEM IS IN UNSAFE STATE");
goto y;

}
}
printf("\nSYSTEM IS IN SAFE STATE");
printf("\nThe Safe Sequence is -- (");
for(i=0;i<fl;i++)

printf("P%d ",seq[i]);
printf(")");

y: printf("\nProcess\t\tAllocation\t\tMax\t\t\tNeed\n");
for(i=0;i<n;i++)
{

printf("P%d\t",i);
for(j=0;j<r;j++)

31

}
getch();

printf("%6d",f[i].all[j]);
for(j=0;j<r;j++)

printf("%6d",f[i].max[j]);
for(j=0;j<r;j++)

printf("%6d",f[i].need[j]);
printf("\n");

}

INPUT

Enter number of processes – 5

Enter number of resources
Enter details for P0

 -- 3

Enter allocation -- 0 1 0
Enter Max -- 7 5 3

Enter details for P1

Enter allocation -- 2 0 0

Enter Max -- 3 2 2

Enter details for P2

Enter allocation -- 3 0 2

Enter Max -- 9 0 2

Enter details for P3

Enter allocation -- 2 1 1

Enter Max -- 2 2 2

Enter details for P4

Enter allocation -- 0 0 2

Enter Max -- 4 3 3

Enter Available Resources -- 3 3 2

Enter New Request Details --
Enter pid -- 1

Enter Request for Resources -- 1 0 2

OUTPUT
P1 is visited(5 3 2)

P3 is visited(7 4 3)

P4 is visited(7 4 5)
P0 is visited(7 5 5)

P2 is visited(10 5 7)

SYSTEM IS IN SAFE STATE

The Safe Sequence is -- (P1 P3 P4 P0 P2)

Process Allocation

Max

Need

P0 0 1 0 7 5 3 7 4 3
P1 3 0 2 3 2 2 0 2 0
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

32

EXPERIMENT 9

9.1 OBJECTIVE
*Write a C program to simulate disk scheduling algorithms
a) FCFS b) SCAN c) C-SCAN

9.2 DESCRIPTION
One of the responsibilities of the operating system is to use the hardware efficiently. For the disk drives, meeting
this responsibility entails having fast access time and large disk bandwidth. Both the access time and the
bandwidth can be improved by managing the order in which disk I/O requests are serviced which is called as disk
scheduling. The simplest form of disk scheduling is, of course, the first-come, first-served (FCFS) algorithm. This
algorithm is intrinsically fair, but it generally does not provide the fastest service. In the SCAN algorithm, the disk
arm starts at one end, and moves towards the other end, servicing requests as it reaches each cylinder, until it
gets to the other end of the disk. At the other end, the direction of head movement is reversed, and servicing
continues. The head continuously scans back and forth across the disk. C-SCAN is a variant of SCAN designed to
provide a more uniform wait time. Like SCAN, C-SCAN moves the head from one end of the disk to the other,
servicing requests along the way. When the head reaches the other end, however, it immediately returns to the
beginning of the disk without servicing any requests on the return trip

9.3 PROGRAM

9.3.1 FCFS DISK SCHEDULING ALGORITHM
#include<stdio.h>
main()
{

int t[20], n, I, j, tohm[20], tot=0;
float avhm;
clrscr();
printf(“enter the no.of tracks”);
scanf(“%d”,&n);
printf(“enter the tracks to be traversed”);
for(i=2;i<n+2;i++)

scanf(“%d”,&t*i+);
for(i=1;i<n+1;i++)
{

tohm[i]=t[i+1]-t[i];
if(tohm[i]<0)
tohm[i]=tohm[i]*(-1);

}
for(i=1;i<n+1;i++)

tot+=tohm[i];
avhm=(float)tot/n;
printf(“Tracks traversed\tDifference between tracks\n”);
for(i=1;i<n+1;i++)

printf(“%d\t\t\t%d\n”,t*i+,tohm*i+);
printf("\nAverage header movements:%f",avhm);
getch();

}

INPUT
Enter no.of tracks:9
Enter track position:55 58 60 70 18 90 150 160 184

OUTPUT

Tracks traversed Difference between tracks
55
58
60
70
18
90

45
3
2

10
52
72

33

150
160
184

60
10
24

Average header movements:30.888889

9.3.2 SCAN DISK SCHEDULING ALGORITHM
#include<stdio.h>
main()
{

int t[20], d[20], h, i, j, n, temp, k, atr[20], tot, p, sum=0;

clrscr();
printf("enter the no of tracks to be traveresed");
scanf("%d'",&n);
printf("enter the position of head");
scanf("%d",&h);
t[0]=0;t[1]=h;
printf("enter the tracks");
for(i=2;i<n+2;i++)

scanf("%d",&t[i]);
for(i=0;i<n+2;i++)
{

} } }

for(j=0;j<(n+2)-i-1;j++)
{ if(t[j]>t[j+1])

{

temp=t[j];
t[j]=t[j+1];
t[j+1]=temp;

for(i=0;i<n+2;i++)
if(t[i]==h)

j=i;k=i;
p=0;
while(t[j]!=0)
{

atr[p]=t[j];
j--;
p++;

}
atr[p]=t[j];
for(p=k+1;p<n+2;p++,k++)

atr[p]=t[k+1];
for(j=0;j<n+1;j++)
{

if(atr[j]>atr[j+1])
d[j]=atr[j]-atr[j+1];

else
d[j]=atr[j+1]-atr[j];

sum+=d[j];
}
printf("\nAverage header movements:%f",(float)sum/n);
getch();

}

INPUT
Enter no.of tracks:9
Enter track position:55 58 60 70 18 90 150 160 184

OUTPUT

Tracks traversed Difference between tracks
150 50

34

160
184
90
70
60
58
55
18

10
24
94
20
10
2
3
37

Average header movements: 27.77

9.3.3 C-SCAN DISK SCHEDULING ALGORITHM
#include<stdio.h>
main()
{

int t[20], d[20], h, i, j, n, temp, k, atr[20], tot, p, sum=0;
clrscr();
printf("enter the no of tracks to be traveresed");
scanf("%d'",&n);
printf("enter the position of head");
scanf("%d",&h);
t[0]=0;t[1]=h;
printf("enter total tracks");
scanf("%d",&tot);
t[2]=tot-1;
printf("enter the tracks");
for(i=3;i<=n+2;i++)

scanf("%d",&t[i]);
for(i=0;i<=n+2;i++)

for(j=0;j<=(n+2)-i-1;j++)
if(t[j]>t[j+1])
{

}
for(i=0;i<=n+2;i++)

if(t[i]==h)

temp=t[j];
t[j]=t[j+1];
t[j+1]=temp;

p=0;
while(t[j]!=tot-1)
{

j=i;break;

atr[p]=t[j];
j++;
p++;

}
atr[p]=t[j];
p++;
i=0;
while(p!=(n+3) && t[i]!=t[h])
{

atr[p]=t[i];
i++;
p++;

}
for(j=0;j<n+2;j++)
{

if(atr[j]>atr[j+1])
d[j]=atr[j]-atr[j+1];

else
d[j]=atr[j+1]-atr[j];

sum+=d[j];

35

}
printf("total header movements%d",sum);
printf("avg is %f",(float)sum/n);
getch();

}

INPUT
Enter the track position : 55 58 60 70 18 90 150 160 184
Enter starting position : 100

OUTPUT

Tracks traversed Difference Between tracks

150
160
184
18
55
58
60
70
90

50
10
24
240
37
3
2
10
20

Average seek time : 35.7777779

36

EXPERIMENT 10

10.1 OBJECTIVE
Write a C program to simulate page replacement algorithms
a) FIFO b) LRU c) LFU

10.2 DESCRIPTION
Page replacement is basic to demand paging. It completes the separation between logical memory and physical
memory. With this mechanism, an enormous virtual memory can be provided for programmers on a smaller
physical memory. There are many different page-replacement algorithms. Every operating system probably has
its own replacement scheme. A FIFO replacement algorithm associates with each page the time when that page
was brought into memory. When a page must be replaced, the oldest page is chosen. If the recent past is used
as an approximation of the near future, then the page that has not been used for the longest period of time can
be replaced. This approach is the Least Recently Used (LRU) algorithm. LRU replacement associates with each
page the time of that page's last use. When a page must be replaced, LRU chooses the page that has not been
used for the longest period of time. Least frequently used (LFU) page-replacement algorithm requires that the
page with the smallest count be replaced. The reason for this selection is that an actively used page should have
a large reference count.

10.3 PROGRAM

10.3.1 FIFO PAGE REPLACEMENT ALGORITHM
#include<stdio.h>
#include<conio.h>
main()
{

int i, j, k, f, pf=0, count=0, rs[25], m[10], n;
clrscr();
printf("\n Enter the length of reference string -- ");
scanf("%d",&n);
printf("\n Enter the reference string -- ");
for(i=0;i<n;i++)

scanf("%d",&rs[i]);
printf("\n Enter no. of frames -- ");
scanf("%d",&f);
for(i=0;i<f;i++)

m[i]=-1;

printf("\n The Page Replacement Process is -- \n");
for(i=0;i<n;i++)
{

for(k=0;k<f;k++)
{

}
if(k==f)
{

}

if(m[k]==rs[i])
break;

m[count++]=rs[i];
pf++;

for(j=0;j<f;j++)
printf("\t%d",m[j]);

if(k==f)
printf("\tPF No. %d",pf);

printf("\n");
if(count==f)

count=0;
}
printf("\n The number of Page Faults using FIFO are %d",pf);
getch();

37

}

INPUT
Enter the length of reference string – 20
Enter the reference string -- 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
Enter no. of frames -- 3

OUTPUT
The Page Replacement Process is –

7 -1 -1 PF No. 1
7 0 -1 PF No. 2
7 0 1 PF No. 3
2 0 1 PF No. 4
2 0 1

2 3 1 PF No. 5
2 3 0 PF No. 6
4 3 0 PF No. 7
4 2 0 PF No. 8
4 2 3 PF No. 9
0 2 3 PF No. 10
0 2 3

0 2 3

0 1 3 PF No. 11
0 1 2 PF No. 12
0 1 2

0 1 2

7 1 2 PF No. 13
7 0 2 PF No. 14
7 0 1 PF No. 15

The number of Page Faults using FIFO are 15

10.3.2 LRU PAGE REPLACEMENT ALGORITHM
#include<stdio.h>
#include<conio.h>
main()
{

int i, j , k, min, rs[25], m[10], count[10], flag[25], n, f, pf=0, next=1;
clrscr();
printf("Enter the length of reference string -- ");
scanf("%d",&n);
printf("Enter the reference string -- ");
for(i=0;i<n;i++)
{

scanf("%d",&rs[i]);
flag[i]=0;

}
printf("Enter the number of frames -- ");
scanf("%d",&f);
for(i=0;i<f;i++)
{

count[i]=0;
m[i]=-1;

}
printf("\nThe Page Replacement process is -- \n");
for(i=0;i<n;i++)
{

for(j=0;j<f;j++)
{

if(m[j]==rs[i])
{

flag[i]=1;

38

}

}
if(flag[i]==0)
{

count[j]=next;
next++;

if(i<f)
{

}
else
{

}
pf++;

}

m[i]=rs[i];
count[i]=next;
next++;

min=0;
for(j=1;j<f;j++)

if(count[min] > count[j])
min=j;

m[min]=rs[i];
count[min]=next;
next++;

for(j=0;j<f;j++)
printf("%d\t", m[j]);

if(flag[i]==0)
printf("PF No. -- %d" , pf);

printf("\n");
}
printf("\nThe number of page faults using LRU are %d",pf);
getch();

}

INPUT
Enter the length of reference string -- 20
Enter the reference string -- 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
Enter the number of frames -- 3

OUTPUT
The Page Replacement process is --

7 -1 -1 PF No. -- 1
7 0 -1 PF No. -- 2
7 0 1 PF No. -- 3
2 0 1 PF No. -- 4
2 0 1

2 0 3 PF No. -- 5
2 0 3

4 0 3 PF No. – 6
4 0 2 PF No. – 7
4 3 2 PF No. – 8
0 3 2 PF No. – 9
0 3 2

0 3 2

1 3 2 PF No. – 10
1 3 2

1 0 2 PF No. – 11
1 0 2

1 0 7 PF No. – 12
1 0 7

39

1 0 7
The number of page faults using LRU are 12

10.3.3 LFU PAGE REPLACEMENT ALGORITHM
#include<stdio.h>
#include<conio.h>

main()
{

int rs[50], i, j, k, m, f, cntr[20], a[20], min, pf=0;
clrscr();
printf("\nEnter number of page references -- ");
scanf("%d",&m);

printf("\nEnter the reference string -- ");
for(i=0;i<m;i++)

scanf("%d",&rs[i]);

printf("\nEnter the available no. of frames -- ");
scanf("%d",&f);

for(i=0;i<f;i++)
{

cntr[i]=0;
a[i]=-1;

}
Printf(“\nThe Page Replacement Process is – \n“);
for(i=0;i<m;i++)
{

for(j=0;j<f;j++)

if(rs[i]==a[j])
{

if(j==f)
{

}

min = 0;

cntr[j]++;
break;

for(k=1;k<f;k++)
if(cntr[k]<cntr[min])

min=k;
a[min]=rs[i];
cntr[min]=1;
pf++;

}
printf("\n");
for(j=0;j<f;j++)

printf("\t%d",a[j]);
if(j==f)

}

printf(“\tPF No. %d”,pf);

printf("\n\n Total number of page faults -- %d",pf);
getch();

}

INPUT
Enter number of page references -- 10
Enter the reference string -- 1 2 3 4 5 2 5 2 5 1 4 3
Enter the available no. of frames --- 3

40

OUTPUT
The Page Replacement Process is –

1 -1 -1 PF No. 1
1 2 -1 PF No. 2
1 2 3 PF No. 3
4 2 3 PF No. 4
5 2 3 PF No. 5
5 2 3

5 2 3

5 2 1 PF No. 6
5 2 4 PF No. 7
5 2 3 PF No. 8

Total number of page faults -- 8

41

EXPERIMENT 11

11.1 OBJECTIVE
*Write a C program to simulate page replacement algorithms
a) Optimal

11.2 DESCRIPTION
Optimal page replacement algorithm has the lowest page-fault rate of all algorithms and will never suffer from
Belady's anomaly. The basic idea is to replace the page that will not be used for the longest period of time. Use
of this page-replacement algorithm guarantees the lowest possible page fault rate for a fixed number of frames.
Unfortunately, the optimal page-replacement algorithm is difficult to implement, because it requires future
knowledge of the reference string.

11.3 PROGRAM
#include<stdio.h>
int n;
main()
{

int seq[30],fr[5],pos[5],find,flag,max,i,j,m,k,t,s;
int count=1,pf=0,p=0;
float pfr;
clrscr();
printf("Enter maximum limit of the sequence: ");
scanf("%d",&max);
printf("\nEnter the sequence: ");
for(i=0;i<max;i++)

scanf("%d",&seq[i]);
printf("\nEnter no. of frames: ");
scanf("%d",&n);
fr[0]=seq[0];
pf++;
printf("%d\t",fr[0]);
i=1;
while(count<n)
{

flag=1;
p++;
for(j=0;j<i;j++)
{

if(seq[i]==seq[j])
flag=0;

}
if(flag!=0)
{

}
i++;

}

fr[count]=seq[i];
printf("%d\t",fr[count]);
count++;
pf++;

printf("\n");
for(i=p;i<max;i++)
{

flag=1;
for(j=0;j<n;j++)
{

if(seq[i]==fr[j])
flag=0;

}
if(flag!=0)

42

{
for(j=0;j<n;j++)
{

m=fr[j];
for(k=i;k<max;k++)
{

if(seq[k]==m)
{

}
else

}
}

pos[j]=k;
break;

pos[j]=1;

for(k=0;k<n;k++)
{

if(pos[k]==1)
flag=0;

}
if(flag!=0)

s=findmax(pos);
if(flag==0)
{

for(k=0;k<n;k++)
{

if(pos[k]==1)
{

s=k;
break;

}
}

}
fr[s]=seq[i];
for(k=0;k<n;k++)

printf("%d\t",fr[k]);
pf++;
printf("\n");

}
}
pfr=(float)pf/(float)max;
printf("\nThe no. of page faults are %d",pf);
printf("\nPage fault rate %f",pfr);
getch();

}
int findmax(int a[])
{

int max,i,k=0;
max=a[0];
for(i=0;i<n;i++)
{

if(max<a[i])
{

}
INPUT

}
}
return k;

max=a[i];
k=i;

Enter number of page references -- 10
Enter the reference string -- 1 2 3 4 5 2 5 2 5 1 4 3

43

Enter the available no. of frames -- 3

OUTPUT
The Page Replacement Process is –

1 -1 -1 PF No. 1
1 2 -1 PF No. 2
1 2 3 PF No. 3
4 2 3 PF No. 4
5 2 3 PF No. 5
5 2 3

5 2 3

5 2 1 PF No. 6
5 2 4 PF No. 7
5 2 3 PF No. 8

Total number of page faults -- 8

44

EXPERIMENT 12

12.1 OBJECTIVE
*Write a C program to simulate producer-consumer problem using semaphores.

12.2 DESCRIPTION
Producer-consumer problem, is a common paradigm for cooperating processes. A producer process produces
information that is consumed by a consumer process. One solution to the producer-consumer problem uses
shared memory. To allow producer and consumer processes to run concurrently, there must be available a
buffer of items that can be filled by the producer and emptied by the consumer. This buffer will reside in a
region of memory that is shared by the producer and consumer processes. A producer can produce one item
while the consumer is consuming another item. The producer and consumer must be synchronized, so that the
consumer does not try to consume an item that has not yet been produced.

12.3 PROGRAM
#include<stdio.h>
void main()
{

int buffer[10], bufsize, in, out, produce, consume, choice=0;
in = 0;
out = 0;
bufsize = 10;
while(choice !=3)
{

printf(“\n1. Produce \t 2. Consume \t3. Exit”);
printf(“\nEnter your choice: ”);
scanf(“%d”, &choice);
switch(choice) {

case 1: if((in+1)%bufsize==out)
printf(“\nBuffer is Full”);

else
{

}
Break;

printf(“\nEnter the value: “);
scanf(“%d”, &produce);
buffer[in] = produce;
in = (in+1)%bufsize;

case 2: if(in == out)
printf(“\nBuffer is Empty”);

} } }

else
{

}
break;

consume = buffer[out];
printf(“\nThe consumed value is %d”, consume);
out = (out+1)%bufsize;

OUTPUT
1. Produce 2. Consume 3. Exit
Enter your choice: 2
Buffer is Empty
1. Produce 2. Consume 3. Exit
Enter your choice: 1
Enter the value: 100
1. Produce 2. Consume 3. Exit
Enter your choice: 2
The consumed value is 100
1. Produce 2. Consume 3. Exit
Enter your choice: 3

45

EXPERIMENT 13

13.1 OBJECTIVE
*Write a C program to simulate the concept of Dining-Philosophers problem.

13.2 DESCRIPTION
The dining-philosophers problem is considered a classic synchronization problem because it is an example of a
large class of concurrency-control problems. It is a simple representation of the need to allocate several
resources among several processes in a deadlock-free and starvation-free manner. Consider five philosophers
who spend their lives thinking and eating. The philosophers share a circular table surrounded by five chairs, each
belonging to one philosopher. In the center of the table is a bowl of rice, and the table is laid with five single
chopsticks. When a philosopher thinks, she does not interact with her colleagues. From time to time, a
philosopher gets hungry and tries to pick up the two chopsticks that are closest to her (the chopsticks that are
between her and her left and right neighbors). A philosopher may pick up only one chopstick at a time.
Obviously, she cam1ot pick up a chopstick that is already in the hand of a neighbor. When a hungry philosopher
has both her chopsticks at the same time, she eats without releasing her chopsticks. When she is finished eating,
she puts down both of her chopsticks and starts thinking again. The dining-philosophers problem may lead to a
deadlock situation and hence some rules have to be framed to avoid the occurrence of deadlock.

13.3 PROGRAM
int tph, philname[20], status[20], howhung, hu[20], cho;
main()
{

int i;
clrscr();
printf("\n\nDINING PHILOSOPHER PROBLEM");
printf("\nEnter the total no. of philosophers: ");
scanf("%d",&tph);
for(i=0;i<tph;i++)
{

philname[i] = (i+1);
status[i]=1;

}
printf("How many are hungry : ");
scanf("%d", &howhung);
if(howhung==tph)
{

}
else
{

printf("\nAll are hungry..\nDead lock stage will occur");
printf("\nExiting..");

for(i=0;i<howhung;i++)
{

printf("Enter philosopher %d position: ",(i+1));
scanf("%d", &hu[i]);
status[hu[i]]=2;

}
do
{

printf("1.One can eat at a time\t2.Two can eat at a time\t3.Exit\nEnter your choice:");
scanf("%d", &cho);
switch(cho)
{

case 1: one();
break;

case 2: two();
break;

case 3: exit(0);
default: printf("\nInvalid option..");

}

46

}while(1);
}

}
one()
{

int pos=0, x, i;
printf("\nAllow one philosopher to eat at any time\n");
for(i=0;i<howhung; i++, pos++)
{

}
}
two()
{

printf("\nP %d is granted to eat", philname[hu[pos]]);
for(x=pos;x<howhung;x++)

printf("\nP %d is waiting", philname[hu[x]]);

int i, j, s=0, t, r, x;
printf("\n Allow two philosophers to eat at same time\n");
for(i=0;i<howhung;i++)
{

for(j=i+1;j<howhung;j++)
{

if(abs(hu[i]-hu[j])>=1&& abs(hu[i]-hu[j])!=4)
{

printf("\n\ncombination %d \n", (s+1));
t=hu[i];
r=hu[j];
s++;
printf("\nP %d and P %d are granted to eat", philname[hu[i]],

philname[hu[j]]);
for(x=0;x<howhung;x++)
{

if((hu[x]!=t)&&(hu[x]!=r))
printf("\nP %d is waiting", philname[hu[x]]);

}
}

}
}

}

INPUT
DINING PHILOSOPHER PROBLEM
Enter the total no. of philosophers: 5
How many are hungry : 3
Enter philosopher 1 position: 2
Enter philosopher 2 position: 4
Enter philosopher 3 position: 5

OUTPUT
1. One can eat at a time 2.Two can eat at a time 3.Exit
Enter your choice: 1

Allow one philosopher to eat at any time
P 3 is granted to eat
P 3 is waiting
P 5 is waiting
P 0 is waiting
P 5 is granted to eat
P 5 is waiting
P 0 is waiting
P 0 is granted to eat
P 0 is waiting

47

1.One can eat at a time 2.Two can eat at a time 3.Exit
Enter your choice: 2

Allow two philosophers to eat at same time
combination 1
P 3 and P 5 are granted to eat
P 0 is waiting

combination 2
P 3 and P 0 are granted to eat
P 5 is waiting

combination 3
P 5 and P 0 are granted to eat
P 3 is waiting

1.One can eat at a time 2.Two can eat at a time 3.Exit
Enter your choice: 3

48

LAB QUESTIONS &

ASSIGNMENTS

49

EXPERIMENT 1

1.1 PRE-LAB QUESTIONS
1. Define operating system?

2. What are the different types of operating systems?

3. Define a process?

4. What is CPU Scheduling?

5. Define arrival time, burst time, waiting time, turnaround time?

1.2 POST-LAB QUESTIONS
1. What is the advantage of round robin CPU scheduling algorithm?

2. Which CPU scheduling algorithm is for real-time operating system?

3. In general, which CPU scheduling algorithm works with highest waiting time?

4. Is it possible to use optimal CPU scheduling algorithm in practice?

5. What is the real difficulty with the SJF CPU scheduling algorithm?

1.3 ASSIGNMENT QUESTIONS
1. Write a C program to implement round robin CPU scheduling algorithm for the following given scenario. All

the processes in the system are divided into two categories – system processes and user processes. System

processes are to be given higher priority than user processes. Consider the time quantum size for the

system processes and user processes to be 5 msec and 2 msec respectively.

2. Write a C program to simulate pre-emptive SJF CPU scheduling algorithm.

EXPERIMENT 2

2.1 PRE-LAB QUESTIONS
1. What is multi-level queue CPU Scheduling?

2. Differentiate between the general CPU scheduling algorithms like FCFS, SJF etc and multi-level queue CPU

Scheduling?

3. What are CPU-bound I/O-bound processes?

2.2 POST-LAB QUESTIONS
1. What are the parameters to be considered for designing a multilevel feedback queue scheduler?

2. Differentiate multi-level queue and multi-level feedback queue CPU scheduling algorithms?

3. What are the advantages of multi-level queue and multi-level feedback queue CPU scheduling algorithms?

2.3 ASSIGNMENT QUESTIONS
1. Write a C program to simulate multi-level queue scheduling algorithm considering the following scenario.

All the processes in the system are divided into two categories – system processes and user processes.

System processes are to be given higher priority than user processes. Consider each process priority to be

from 1 to 3. Use priority scheduling for the processes in each queue.

EXPERIMENT 3

3.1 PRE-LAB QUESTIONS
1. Define file?

2. What are the different kinds of files?

3. What is the purpose of file allocation strategies?

3.2 POST-LAB QUESTIONS
1. Identify ideal scenarios where sequential, indexed and linked file allocation strategies are most appropriate?

2. What are the disadvantages of sequential file allocation strategy?

3. What is an index block?

4. What is the file allocation strategy used in UNIX?

50

3.3 ASSIGNMENT QUESTIONS
1. Write a C program to simulate a two-level index scheme for file allocation?

EXPERIMENT 4

4.1 PRE-LAB QUESTIONS
1. What is the purpose of memory management unit?

2. Differentiate between logical address and physical address?

3. What are the different types of address binding techniques?

4. What is the basic idea behind contiguous memory allocation?

5. How is dynamic memory allocation useful in multiprogramming operating systems?

4.2 POST-LAB QUESTIONS
1. Differentiate between equal sized and unequal sized MFT schemes?

2. What is the advantage of MVT memory management scheme over MFT?

4.3 ASSIGNMENT QUESTIONS
1. Write a C program to simulate MFT memory management scheme with unequal sized partitions.

EXPERIMENT 5

5.1 PRE-LAB QUESTIONS
1. Differentiate between the memory management schemes MFT and MVT?

2. What is dynamic memory allocation?

3. What is external fragmentation?

5.2 POST-LAB QUESTIONS
1. Which of the dynamic contiguous memory allocation strategies suffer with external fragmentation?

2. What are the possible solutions for the problem of external fragmentation?

3. What is 50-percent rule?

4. What is compaction?

5. Which of the memory allocation techniques first-fit, best-fit, worst-fit is efficient? Why?

5.3 ASSIGNMENT QUESTIONS
1. Write a C program to implement compaction technique.

EXPERIMENT 6

6.1 PRE-LAB QUESTIONS
1. What are the advantages of noncontiguous memory allocation schemes?

2. What is the process of mapping a logical address to physical address with respect to the paging memory

management technique?

3. Define the terms – base address, offset?

6.2 POST-LAB QUESTIONS

1. Differentiate between paging and segmentation memory allocation techniques?

2. What is the purpose of page table?

3. Whether the paging memory management technique suffers with internal or external fragmentation

problem. Why?

4. What is the effect of paging on the overall context-switching time?

6.3 ASSIGNMENT QUESTIONS
1. Write a C program to simulate two-level paging technique.

2. Write a C program to simulate segmentation memory management technique.

51

EXPERIMENT 7

7.1 PRE-LAB QUESTIONS
1. Define directory?

2. Describe the general directory structure?

3. List the different types of directory structures?

7.2 POST-LAB QUESTIONS
1. Which of the directory structures is efficient? Why?

2. Which directory structure does not provide user-level isolation and protection?

3. What is the advantage of hierarchical directory structure?

7.3 ASSI7GNMENT QUESTIONS
1. Write a C to simulate acyclic graph directory structure?

2. Write a C to simulate general graph directory structure?

EXPERIMENT 8

8.1 PRE-LAB QUESTIONS
1. Define resource. Give examples.

2. What is deadlock?

3. What are the conditions to be satisfied for the deadlock to occur?

8.2 POST-LAB QUESTIONS
1. How can be the resource allocation graph used to identify a deadlock situation?

2. How is Banker’s algorithm useful over resource allocation graph technique?

3. Differentiate between deadlock avoidance and deadlock prevention?

8.3 ASSIGNMENT QUESTIONS
1. Write a C program to implement deadlock detection technique for the following scenarios?

a. Single instance of each resource type

b. Multiple instances of each resource type

EXPERIMENT 9

9.1 PRE-LAB QUESTIONS
1. What is disk scheduling?

2. List the different disk scheduling algorithms?

3. Define the terms – disk seek time, disk access time and rotational latency?

9.2 POST-LAB QUESTIONS
1. What is the advantage of C-SCAN algorithm over SCAN algorithm?

2. Which disk scheduling algorithm has highest rotational latency? Why?

9.3 ASSIGNMENT QUESTIONS
1. Write a C program to implement SSTF disk scheduling algorithm?

EXPERIMENT 10

10.1 PRE-LAB QUESTIONS
1. Define the concept of virtual memory?

2. What is the purpose of page replacement?

3. Define the general process of page replacement?

4. List out the various page replacement techniques?

5. What is page fault?

10.2 POST-LAB QUESTIONS

52

1. Which page replacement algorithm suffers with the problem of Belady’s anomaly?

2. Define the concept of thrashing? What is the scenario that leads to the situation of thrashing?

10.3 ASSIGNMENT QUESTIONS
1. Write a C program to simulate LRU-approximation page replacement algorithm?

a. Additional-Reference bits algorithm

b. Second-chance algorithm

EXPERIMENT 11

11.1 PRE-LAB QUESTIONS
1. What are the benefits of optimal page replacement algorithm over other page replacement algorithms?

11.2 POST-LAB QUESTIONS
1. Why can’t the optimal page replacement technique be used in practice?

EXPERIMENT 12

12.1 PRE-LAB QUESTIONS
1. What is the need for process synchronization?

2. Define a semaphore?

3. Define producer-consumer problem?

12.2 POST-LAB QUESTIONS
1. Discuss the consequences of considering bounded and unbounded buffers in producer-consumer problem?

2. Can producer and consumer processes access the shared memory concurrently? If not which technique

provides such a benefit?

12.3 ASSIGNMENT QUESTIONS
1. Write a C program to simulate producer-consumer problem using message-passing system.

EXPERIMENT 13

13.1 PRE-LAB QUESTIONS
1. Differentiate between a monitor, semaphore and a binary semaphore?

2. Define clearly the dining-philosophers problem?

13.2 POST-LAB QUESTIONS
1. Identify the scenarios in the dining-philosophers problem that leads to the deadlock situations?

13.3 ASSIGNMENT QUESTIONS
1. Write a C program to simulate readers-writers problem using monitors?

	Implement the following programs on Linux platform using C language.
	EXPERIMENT 1
	1.1 OBJECTIVE
	1.2 DESCRIPTION
	1.2.1 FCFS CPU SCHEDULING ALGORITHM
	1.2.2 SJF CPU SCHEDULING ALGORITHM
	1.2.3 ROUND ROBIN CPU SCHEDULING ALGORITHM
	1.2.4 PRIORITY CPU SCHEDULING ALGORITHM

	1.3 PROGRAM
	1.3.3 ROUND ROBIN CPU SCHEDULING ALGORITHM
	INPUT
	OUTPUT
	1.3.4 PRIORITY CPU SCHEDULING ALGORITHM

	EXPERIMENT 2
	2.1 OBJECTIVE
	2.2 DESCRIPTION
	2.3 PROGRAM
	INPUT

	EXPERIMENT 3
	3.1 OBJECTIVE
	3.2 DESCRIPTION
	3.2.1 SEQUENTIAL FILE ALLOCATION
	3.2.2 LINKED FILE ALLOCATION
	3.2.3 INDEXED FILE ALLOCATION

	3.3 PROGRAM
	INPUT:
	INPUT: (1)
	OUTPUT:
	INPUT: (2)
	OUTPUT: (1)

	EXPERIMENT 4
	4.1 OBJECTIVE
	4.2 DESCRIPTION
	4.3 PROGRAM
	4.3.1 MFT MEMORY MANAGEMENT TECHNIQUE
	INPUT
	4.3.2 MVT MEMORY MANAGEMENT TECHNIQUE

	EXPERIMENT 5
	5.1 OBJECTIVE
	5.2 DESCRIPTION
	5.3 PROGRAM
	5.3.1 WORST-FIT
	INPUT
	INPUT (1)
	INPUT (2)

	EXPERIMENT 6
	6.1 OBJECTIVE
	6.2 DESCRIPTION
	INPUT

	EXPERIMENT 7
	7.1 OBJECTIVE
	7.2 DESCRIPTION
	7.3 PROGRAM
	7.3.1 SINGLE LEVEL DIRECTORY ORGANIZATION
	OUTPUT:
	7.3.2 TWO LEVEL DIRECTORY ORGANIZATION
	OUTPUT: (1)
	7.3.3 HIERARCHICAL DIRECTORY ORGANIZATION
	INPUT
	OUTPUT

	8.2 DESCRIPTION

	EXPERIMENT 9
	9.1 OBJECTIVE
	9.2 DESCRIPTION
	9.3 PROGRAM
	9.3.1 FCFS DISK SCHEDULING ALGORITHM
	INPUT
	OUTPUT

	9.3.2 SCAN DISK SCHEDULING ALGORITHM
	INPUT
	OUTPUT

	9.3.3 C-SCAN DISK SCHEDULING ALGORITHM
	INPUT
	OUTPUT

	EXPERIMENT 10
	10.1 OBJECTIVE
	10.2 DESCRIPTION
	10.3 PROGRAM
	10.3.1 FIFO PAGE REPLACEMENT ALGORITHM
	INPUT
	OUTPUT

	10.3.2 LRU PAGE REPLACEMENT ALGORITHM
	INPUT
	OUTPUT

	10.3.3 LFU PAGE REPLACEMENT ALGORITHM
	INPUT
	OUTPUT

	EXPERIMENT 11
	11.1 OBJECTIVE
	11.2 DESCRIPTION
	11.3 PROGRAM
	INPUT
	OUTPUT

	EXPERIMENT 12
	12.1 OBJECTIVE
	12.2 DESCRIPTION
	12.3 PROGRAM
	OUTPUT

	EXPERIMENT 13
	13.1 OBJECTIVE
	13.2 DESCRIPTION
	13.3 PROGRAM
	INPUT
	OUTPUT

	EXPERIMENT 1 (1)
	1.1 PRE-LAB QUESTIONS
	1.2 POST-LAB QUESTIONS
	1.3 ASSIGNMENT QUESTIONS

	EXPERIMENT 2 (1)
	2.1 PRE-LAB QUESTIONS
	2.2 POST-LAB QUESTIONS
	2.3 ASSIGNMENT QUESTIONS

	EXPERIMENT 3 (1)
	3.1 PRE-LAB QUESTIONS
	3.2 POST-LAB QUESTIONS
	3.3 ASSIGNMENT QUESTIONS

	EXPERIMENT 4 (1)
	4.1 PRE-LAB QUESTIONS
	4.2 POST-LAB QUESTIONS
	4.3 ASSIGNMENT QUESTIONS

	EXPERIMENT 5 (1)
	5.1 PRE-LAB QUESTIONS
	5.2 POST-LAB QUESTIONS
	5.3 ASSIGNMENT QUESTIONS

	EXPERIMENT 6 (1)
	6.1 PRE-LAB QUESTIONS
	6.2 POST-LAB QUESTIONS
	6.3 ASSIGNMENT QUESTIONS

	EXPERIMENT 7 (1)
	7.1 PRE-LAB QUESTIONS
	7.2 POST-LAB QUESTIONS
	7.3 ASSI7GNMENT QUESTIONS

	EXPERIMENT 8
	8.1 PRE-LAB QUESTIONS
	8.2 POST-LAB QUESTIONS
	8.3 ASSIGNMENT QUESTIONS

	EXPERIMENT 9 (1)
	9.1 PRE-LAB QUESTIONS
	9.2 POST-LAB QUESTIONS
	9.3 ASSIGNMENT QUESTIONS

	EXPERIMENT 10 (1)
	10.1 PRE-LAB QUESTIONS
	10.2 POST-LAB QUESTIONS
	10.3 ASSIGNMENT QUESTIONS

	EXPERIMENT 11 (1)
	11.1 PRE-LAB QUESTIONS
	11.2 POST-LAB QUESTIONS

	EXPERIMENT 12 (1)
	12.1 PRE-LAB QUESTIONS
	12.2 POST-LAB QUESTIONS
	12.3 ASSIGNMENT QUESTIONS

	EXPERIMENT 13 (1)
	13.1 PRE-LAB QUESTIONS
	13.2 POST-LAB QUESTIONS
	13.3 ASSIGNMENT QUESTIONS

